

SelfServe.sovrin.org

Create a DID and Payment Address using indy-cli

Introduction
Selfserve.sovrin.org is a website designed to help you with one part of getting started
using the Sovrin Test Networks, BuilderNet and StagingNet. The Buildernet is for
your initial trials with setting up your initial agents, DIDs, Schemas, etc. and is the
most volatile of the networks because it gets the newest upgrades first. The
StagingNet is more stable and can be safely used for end-user testing and demo’s
when you are ready to move forward. To be able to enter a DID, a Verkey, and/or a
Payment Address into the form provided, you will need to install an agent with a
wallet that can store the private counterparts of the public keys for these items that
you will provide to the form. In other words, you have to create the items in your own
wallet, before the SelfServe tool can add them to the ledger on the requested Sovrin
Network. These instructions will give you a step-by-step guide to installing indy-cli, a
command line interface that provides access to your very own wallet on your Ubuntu,
Mac, or Windows machine. Let’s get started!

I.Install indy-cli
A. Please see Appendix A (below) and select the right section for instructions on
installing the indy-cli on your Ubuntu, Mac, or Windows machine.

II.Start indy-cli
 . Start your indy-cli using the instructions from Appendix A for your platform.

1. indy-cli --config cliconfig
A. Type ‘y’ to accept the TAA agreements, if needed.

III.Create Pools
 . “Creating a pool” is really just adding a named link to an existing network (or pool).
You only need to create the one you need, but here are the instructions for each:
A. pool create buildernet gen_txn_file=pool_transactions_builder_genesis
B. pool create stagingnet gen_txn_file=pool_transactions_sandbox_genesis
C. Creating a pool only needs done once for each pool on each machine on which you
install indy-cli. Pool connect (the following command) must be done every time you rerun
indy-cli.
D. pool connect <pool-name>

1. pool connect buildernet
IV.Create and open a Wallet

 . The <wallet key> is a secure key that only you should know. Quotes are not required
for this key. Save it in a secure place for later use. You will use it every time you need to run
commands from the CLI.
A. wallet create my_wallet key=<wallet key>
B. wallet open my_wallet key=<wallet key>
C. Note: Keep your wallet open for the remaining commands in this guide.

V.Create a DID
 . did new

A. The return for this command is the DID and Verkey needed in the selfserve web
page. To see all of the DID’s in your wallet use did list . To verify that your DID is on a
network use ledger get-nym did=<your DID>
B. Please note that you can add a seed=<32 character secret seed> to the above
command. The seed parameter allows you to recreate your DID in a different wallet if
needed. The seed parameter is not required, and might not be needed on the test networks
but should be used for DIDs needed for demos or DIDs used on the MainNet.

VI.Create a Payment Address
 . payment-address create payment_method=sov
A. Copy the payment address returned to the appropriate place on the SelfServe web
page. To see all of your payment addresses use payment-address list . To verify that test-
tokens have been added to your payment address use ledger get-payment-
sources payment_address=<your payment-address>
B. Like the DID creation command, you can also add a seed=<32 character secret
seed> to this command. Again, for the test networks it’s not a big deal, but for other
networks this secret seed will be critical to keep track of.

VII.Using the Test Tokens
 . Now that you have test-tokens shared with you by the SelfServe website you can try
sharing those test-tokens with others and using them to pay for transactions by doing one or
more of the following:
A. Transfer test-tokens to another payment address

1. Create another payment address by following step VI.A in your indy-
cli.

2. ledger get-fees payment_method=sov
3. ledger payment source_payment_address=<payment addr with

tokens> target_payment_address=<payment address you want to
xfer tokens to> amount=<amount to xfer> fee=<amount of token_xfer
fee from get-fees>

a. For example, the following will transfer 1 test-token from payment addr1 to payment
addr2 for a fee of 1 test-token:
b. ledger payment
source_payment_address=pay:sov:wZWVnA4mj475vjMxPRuLYtY78dnum6TMyKUx7oEre
odEFTxE8
target_payment_address=pay:sov:6iwcAUxnrU5Ys6cz7s8R7TLKYtYwLekDAYbX9YPf7gV
8cf4Bt amount=100000000 fee=100000000
c. As shown in VI.B the get-payment-sources command will show the resulting
amount in the payment sources for each payment address. If this is the first time you have
tried this, payment addr1 will show 1998 test-tokens (199800000000) and payment addr2
will show 1 test-token.
B. Add a DID to the ledger using test-tokens:

1. Create a new DID using step V.a
2. ledger nym did=<new DID> verkey=<new verkey> role=

source_payment_address=<payment addr1> fee=<amount of did
fee from get-fees>

 . For example, the following command will add an unprivileged DID to the ledger using
50 test-tokens from payment addr1
a. ledger nym did=XMYzYgWjoH8ej1F94zkpMo verkey=~WiDzXMWXriaxJuJihjafqg
role=

source_payment_address=pay:sov:wZWVnA4mj475vjMxPRuLYtY78dnum6TMyKUx7oEre
odEFTxE8 fee=5000000000
b. Check for remaining tokens using same method as VII.B.3.c
C. Add a schema to the ledger using test-tokens

1. Using the same pattern of adding a source_payment_address and a
fee, you can perform write commands to the ledger, such as creating
a schema as in this example:

2. ledger schema name=MyFirstSchema version=1.0
attr_names=FirstName,LastName,Address,Birthdate,SSN
source_payment_address=pay:sov:wZWVnA4mj475vjMxPRuLYt
Y78dnum6TMyKUx7oEreodEFTxE8 fee=25000000000

D. If you run out of tokens, just put your payment address into the SelfServe tool again
and it will give you more test tokens as long as there are less than 4000 test-tokens at your
address.

APPENDIX A

Installing the Indy CLI

You will need to perform the following once for each Indy CLI machine you would like to set
up. Assistance for each method listed below is available via support@sovrin.org.

Windows:
To install the CLI on Windows 10 perform the following steps:

1. Download indy-cli_1.14.2.zip and unzip it.
2. Download libsovtoken_1.0.5.zip , unzip it, and copy the resulting sovtoken library

files to the right places.
3. Run indy-cli.exe to verify proper installation. You should see a new window appear

with an indy> prompt. Type “exit” to close the app.
4. If you get an error stating that it is missing vcruntime140.dll then do the following:

a. Download and install vc_redist.x64.exe from the Visual Studio 2017 section on the
https://support.microsoft.com/en-ae/help/2977003/the-latest-supported-visual-c-downloads
page
b. Rerun indy-cli.exe to see if it works as described in previous step.

5. Download the GENESIS files to the indy-cli directory for later use:
 . Open a command prompt. (This will work differently if you use Windows Terminal)
a. cd to the directory where you unzipped the indy-cli package.

i.For example, if you unzipped directly in your ‘downloads’ directory like I did you would
type: cd \Users\LBendixsen\Downloads\indy-cli_1.14.2
b. Download the following two files:
c. This one is for the Sovrin BuilderNet (be sure to copy the entire command from the
three lines):

d. curl -O https://raw.githubusercontent.com/sovrin-
foundation/sovrin/master/sovrin/pool_transactions_builder_genesis
e. And this one is for the Sovrin StagingNet:
f. curl -O https://raw.githubusercontent.com/sovrin-
foundation/sovrin/stable/sovrin/pool_transactions_sandbox_genesis

6. Create a file named cliconfig in the same directory with indy-cli.exe and add to it the
following contents:
{
 "plugins": "<Full Path to sovtoken.dll.lib>/sovtoken.dll.lib:sovtoken_init",
 "taaAcceptanceMechanism": "for_session"
}

7. Run indy-cli using a parameter:
a. indy-cli --config cliconfig
b. A full path for cliconfig is needed if you do not run indy-cli from its directory.

Ubuntu:
To install the CLI on Ubuntu, perform the following steps from the ubuntu command line:

1. sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
CE7709D068DB5E88

2. sudo add-apt-repository "deb https://repo.sovrin.org/sdk/deb xenial stable"
3. sudo add-apt-repository "deb https://repo.sovrin.org/deb xenial stable"
4. sudo apt-get update -y
5. sudo apt-get upgrade -y
6. sudo apt-get install -y indy-cli libsovtoken
7. cd ~
8. Download the Genesis files for later use:
9. This one is for the Sovrin BuilderNet (be sure to copy the entire command from the

three lines)
10. curl -O https://raw.githubusercontent.com/sovrin-

foundation/sovrin/master/sovrin/pool_transactions_builder_genesis
11. And this one is for the Sovrin StagingNet
12. curl -O https://raw.githubusercontent.com/sovrin-

foundation/sovrin/stable/sovrin/pool_transactions_sandbox_genesis
13. Create a cliconfig file in your home directory and add the following contents:

{
 "plugins": "/usr/lib/libsovtoken.so:sovtoken_init",
 "taaAcceptanceMechanism": "for_session"

 }

14. Run indy-cli:
a. indy-cli --config cliconfig
b. A full path for cliconfig is needed if you do not run indy-cli from its directory

Mac:
Since there is not a prepackaged version of the CLI prepared for the Mac, the following
steps will help you to create an environment, build, and run the CLI in a Mac terminal.

1. Open a Terminal
2. Run the following commands in the terminal:

a. cd ~
b. mkdir github
c. cd github
d. git clone https://github.com/hyperledger/indy-sdk.git
e. /usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"
f. curl https://sh.rustup.rs -sSf | sh

i.Follow onscreen instructions to install rust
g. brew install pkg-config
https://raw.githubusercontent.com/Homebrew/homebrew-
core/65effd2b617bade68a8a2c5b39e1c3089cc0e945/Formula/libsodium.rb automake
autoconf cmake openssl zeromq zmq

3. NOTE: the openssl path needs to match what you currently have on your system
 . Run > ls /usr/local/Cellar/openssl/
a. Note the name of the directory shown (mine is 1.0.2p but latest is 1.0.2q)
b. Use this directory in place of the one listed below in your .profile file

4. Add the following lines to your ~/.profile file (making the correction shown in the
previous step if needed)

export PATH="$HOME/.cargo/bin:$PATH:~/github/indy-
sdk/libindy/target/debug:~/github/indy-sdk/cli/target/debug"
export PKG_CONFIG_ALLOW_CROSS=1
export CARGO_INCREMENTAL=1
export RUST_LOG=indy=trace
export RUST_TEST_THREADS=1
export OPENSSL_DIR=/usr/local/Cellar/openssl/1.0.2p #use your path
export LIBRARY_PATH=~/github/indy-sdk/libindy/target/debug/
export LIBINDY_DIR=~/github/indy-sdk/libindy/target/debug/

5. Run the following commands from your terminal to build the CLI and other
dependencies:
a. source ~/.profile
b. cd ~/github/indy-sdk/libindy
c. cargo build
d. cd ../cli
e. cargo build
f. cd ../libsovtoken/libsovtoken
g. cargo build
6. You can now run indy-cli to make sure it starts from within a terminal by typing:
 . indy-cli
a. exit (To exit from the indy-cli prompt when you are done)
7. Download the Genesis files using the following commands:
 . cd ~

a. This one is for the Sovrin BuilderNet (be sure to copy the entire command from the
three lines):
b. curl -O https://raw.githubusercontent.com/sovrin-
foundation/sovrin/master/sovrin/pool_transactions_builder_genesis
c. And this one is for the Sovrin StagingNet:
d. curl -O https://raw.githubusercontent.com/sovrin-
foundation/sovrin/stable/sovrin/pool_transactions_sandbox_genesis
8. Create a cliconfig file in your home directory and add the following contents:
{
 "plugins": "$HOME/github/libsovtoken/libsovtoken/target/debug/libsovtoken.dylib:sovtoken_init",
 "taaAcceptanceMechanism": "for_session"
}

9. Run indy-cli:
a. indy-cli --config cliconfig
b. A full path for cliconfig is needed if you do not run indy-cli from its directory

